numerical technique for integro-differential equations arising in oscillating magnetic fields

نویسندگان

m. ghasemi

چکیده

in this paper, we propose the chebyshev wavelet approximation for the numerical solution of a class of integro-differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields. we show that the chebyshev approximation transform an integral equation to an explicit system of linear algebraic equations. illustrative examples are included to demonstrate the validity and applicability of the new technique.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical technique for integro-differential equations arising in oscillating magnetic fields

In this paper, we propose the Chebyshev wavelet approximation for the numerical solution of a class of integrodifferential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields. We show that the Chebyshev approximation transform an integral equation to an explicit system of linear algebraic equations. Illustrative examples are included to...

متن کامل

Analytic-Approximate Solution For An Integro- Differential Equation Arising In Oscillating Magnetic Fields Using Homotopy Analysis Method

In this paper, we give an analytical approximate solution for an integro- differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields is considered. The homotopy analysis method (HAM) is used for solving this equation. Several examples are given to reconfirm the efficiency of these algorithms. The results of applying this procedure...

متن کامل

analytic-approximate solution for an integro- differential equation arising in oscillating magnetic fields using homotopy analysis method

in this paper, we give an analytical approximate solution for an integro- differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields is considered. the homotopy analysis method (ham) is used for solving this equation. several examples are given to reconfirm the efficiency of these algorithms. the results of applying this procedure...

متن کامل

Legendre Multi-wavelets to Solve Oscillating Magnetic Fields Integro-differential Equations

In recent years, there has been an increase usage among scientists and engineers to apply wavelet technique to solve both linear and nonlinear problems [1-5]. The main advantage of the wavelet technique is its ability to transform complex problems into a system of algebraic equations. The overview of this method can be found in [6-15]. In this research, an integro-differential equation which de...

متن کامل

Application of the block backward differential formula for numerical solution of Volterra integro-differential equations

In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...

متن کامل

A numerical method for solving delay-fractional differential and integro-differential equations

‎This article develops a direct method for solving numerically‎ ‎multi delay-fractional differential and integro-differential equations‎. ‎A Galerkin method based on Legendre polynomials is implemented for solving‎ ‎linear and nonlinear of equations‎. ‎The main characteristic behind this approach is that it reduces such problems to those of‎ ‎solving a system of algebraic equations‎. ‎A conver...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of science and technology (sciences)

ISSN 1028-6276

دوره 38

شماره 4 2014

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023